
III MODULE 

Heat Transfer 

Heat transfer is the flow of heat from one object to another. Generally, the difference in the 

temperature causes a transfer of heat from one part to the other. This transfer can occur by 

one or more of the three elementary heat transfer processes-conduction, convection and 

radiation. 

Conduction is that mode of heat transfer in which heat is transferred from one part of the 

system to another by the exchange of internal energy of the molecules or the atoms with their 

neighbours without causing a net macroscopic flow of mass or material. We can that in 

conduction the medium is at rest. Convection is defined as that mode of heat transfer in 

which the transfer takes place trough macroscopic movement of the material from one part of 

the system to the other. It means that the medium is in motion. In radiation we can say that 

the mode of transfer is in the form of electromagnetic wave or radiations. This mode of 

transfer does not need any medium. 

CONDUCTION 

According to the second law of thermodynamics, heat will flow from any part of a body at a 

higher temperature to another at lower temperature. We can assume that the heat flux is 

directly proportional to the temperature gradient which also acts as a driving force for heat 

flow. Mathematically  

     Q = -KxA
𝜕𝑇

𝜕𝑥
                                                                (1) 

Where Q is the rate of heat transfer per unit time, T is the absolute temperature in kelvin, A 

the area normal to the direction of flow and Kx is the constant of proportionality known as 

thermal conductivity, its unit is J/m/s/K in SI. The equation (1) is commonly known as 

Fourier’s law of heat conduction. 



HEAT CONDUCTION EQUATION 

GENERAL HEAT CONDUCTION EQUATION FOR CARTESIAN 

CO-ORDINATES 

 

 

  

In the above diagram, all the dimension of the cube is given as dx, dy and dz and the volume 

of the cube is V = dxdydz. 

The direction of the heat transfer is shown in the figure and we have to find out the net heat 

transfer in the system 

So to do it we have to find out heat transfer at each dimension 

HEAT FLOW IN x-DIRECTION 

We know from the Fourier equation that 

Qx= -Kx[dy.dz]
𝑑𝑇

𝑑𝑥
.dt                                                                                                                 (2)   



 where dy.dz is the area perpendicular to the heat transfer 
𝑑𝑇

𝑑𝑥
 is the temperature gradient and 

dt is the time interval 

After some time the heat flow in x-direction will be 

Qx+dx = Qx +
𝜕

𝜕𝑥
[Qx].dx                                                                                                              (3) 

Net heat flow rate in x-direction 

dQx = Qx – { Qx +
𝜕

𝜕𝑥
[Qx].dx} 

       = Qx – Qx – 
𝜕

𝜕𝑥
[Qx].dx 

       = – 
𝜕

𝜕𝑥
[Qx].dx 

       = - 
𝜕

𝜕𝑥
[-Kx[dy.dz]

𝑑𝑇

𝑑𝑥
]dt.dx 

Keeping aside all the constant term 

=dy.dz.dt. 
𝜕

𝜕𝑥
[Kx

𝑑𝑇

𝑑𝑥
].dx 

=dxdydzdt
𝜕

𝜕𝑥
[Kx

𝑑𝑇

𝑑𝑥
]                                                                                                                (4) 

Similarly in y and z direction 

dQy = dxdydzdt
𝜕

𝜕𝑦
.[Ky

𝑑𝑇

𝑑𝑦
]                                                                                                        (5) 

dQz=dxdydzdt
𝜕

𝜕𝑧
.[Kz

𝑑𝑇

𝑑𝑧
]                                                                                                          (6) 

so the total amount of heat in the system:- 

add 4, 5 and 6 

i.e., {
𝜕

𝜕𝑥
[Kx

𝑑𝑇

𝑑𝑥
] + 

𝜕

𝜕𝑦
.[Ky

𝑑𝑇

𝑑𝑦
] + 

𝜕

𝜕𝑧
.[Kz

𝑑𝑇

𝑑𝑧
]}dxdydz                                                                     (7) 



 

 

now consider if any heat generation stay in the system, so heat produced by system generator 

is  

Qg = qg *volume of the system * time  

= qg.dxdydz.dt                                                                                                                         (8) 

HEAT PRODUCED BY SYSTEM 

= mcdT 

= ρdxdydz.c.
𝑑𝑇

𝑑𝑡
. 𝑑𝑇                                                                                                                 (9) 

Now equating all equation 

i.e., heat flow in the system + heat produced by system generator = heat produced by the 

system 

the final equation will be  

𝜕

𝜕𝑥
[Kx

𝑑𝑇

𝑑𝑥
] + 

𝜕

𝜕𝑦
.[Ky

𝑑𝑇

𝑑𝑦
] + 

𝜕

𝜕𝑧
.[Kz

𝑑𝑇

𝑑𝑧
] + qg = ρc

𝑑𝑇

𝑑𝑡
…………….9 

Here dT = change in temperature 

dt = time interval 

c = heat capacity 

K= conductivity 

IF SYSTEM IS ISOTROPIC AND HOMOGENOUS i.e.,Kx=Ky=Kz 

The equation will be 



K(
𝑑2𝑇

𝑑𝑥2 +  
𝑑2𝑇

𝑑𝑦2 +  
𝑑2𝑇

𝑑𝑧2 ) + qg = ρc
𝑑𝑇

𝑑𝑡
 

(
𝑑2𝑇

𝑑𝑥2 +  
𝑑2𝑇

𝑑𝑦2 +  
𝑑2𝑇

𝑑𝑧2 )+ 
qg

𝐾
 = 

𝜌𝑐

𝐾

𝑑𝑇

𝑑𝑡
…………………..HEAT CONDUCTION EQUATION(10) 

CASES OF HEAT CONDUCTION EQUATION 

(i) Heat conduction without any heat-producing consuming/ reaction 

   i.e., qg = 0 

Therefore the equation will become  

𝑑𝑇

𝑑𝑡
=  𝛼 (

𝑑2𝑇

𝑑𝑥2
+  

𝑑2𝑇

𝑑𝑦2
+  

𝑑2𝑇

𝑑𝑧2
 ) 

Here α is known as thermal diffusivity which is α = 
𝐾

𝜌𝑐
 and its unit is m2/s. 

(ii) Heat conduction in steady-state  

   i.e.,  
𝑑𝑇

𝑑𝑡
= 0 

the equation will become 

 

𝛼 (
𝑑2𝑇

𝑑𝑥2
+  

𝑑2𝑇

𝑑𝑦2
+ 

𝑑2𝑇

𝑑𝑧2
 ) = 0 

 

or     α∇2T = 0 

 

∇2 is the laplace operator 

(a) Heat conduction equation in the cylindrical coordinate system is given by 

𝑑𝑇

𝑑𝑡
=  𝛼 [

1

𝑟
 

𝜕

𝜕𝑟
 (𝑟 

𝑑𝑇

𝑑𝑟
) +  

𝑑2𝑇

𝑑𝜃2
+  

𝑑2𝑇

𝑑𝑧2
] 

 

 

 



 

HEAT CONDUCTION THROUGH COMPOSITE WALL 

The thermal resistance concept 

The Fourier quation for steady conduction through a constant area plane wall, can be written 

  Qconduction = -KA
𝑑𝑇

𝑑𝑥
 = KA

𝑇1−𝑇2

𝐿
 

This can be re-arranged as: 

  Qconduction = 
𝑇1−𝑇2

𝑅𝑤𝑎𝑙𝑙
 

  Rwall = 
𝐿

𝑘𝐴
 

Rwall is the thermal resistance of the wall against heat conduction or simply the conduction 

resistance of the wall. 

The heat transfer across the fluid/solid interface is based on Newton’s law of cooling 

  Q = hA(Ts - T∞)  

  RConv = 
1

ℎ𝐴
 

Rconv is the thermal resistance of the surface against heat convection or simply the 

convection resistance of the surface. 

Thermal radiation between a surface of area A at Ts and the surroundings at T∞ can be 

expressed as: 

Q = εσA(Ts
4 - T∞

4) = hrad A (Ts - T∞) =
(T1 − T∞) 

𝑅𝑟𝑎𝑑
 

Rrad = 
1

hradA
 



  hrad = εσ(T2
s + T2

∞)(Ts + T∞) 

where σ =5.67 × 10-8 [W/m2K4] is the Stefan-Boltzman constant. Also 0 < ε < 1 is the 

emissivity of the surface. Note that both the temperature must be in Kelvin. 

THERMAL RESISTANCE NETWORK 

A composite wall refers to a wall of a several heterogeneous layers, e.g., walls of dwelling 

houses where bricks are given a layer of plaster on either side. Likewise walls of furnaces, 

boilers and other heat exchange devices consist of several layers; a layer for mechanical 

strength or for high temperature characteristics (fire brick), a layer of low thermal 

conductivity material to restrict the flow of heat (insulating brick) and another layer for 

structural requirements for good appearance (ordinary brick). 

Fig. 2 shows one such composite wall having three layers of different materials tightly fitted 

to one another. The layers have thicknesses δ1, δ2, δ3 and their thermal conductivities 

correspond to the average temperature conditions. The surface temperature of the wall are 

t1 and t4 and the temperatures at the interfaces are t2 and t3. 

 



 

 

 

 

 

 

 

 

Under steady state conditions, heat flow does not vary across the wall, i.e., it is same for 

every layer. Thus- 

 

Distributing of temperature in a plane multilayer wall is represented by a polygonal line 

(Fig. 3.6). 

When the above analysis is extended to an n-layer composite wall, one 

obtains: 

 

 

Figure 2: STEADY STATE HEAT CONDUCTION THROUGH A COMPOSITE WALL 

http://www.engineeringenotes.com/wp-content/uploads/2017/11/clip_image0154.jpg
http://www.engineeringenotes.com/wp-content/uploads/2017/11/clip_image0174.jpg


where  is sum of the thermal resistances of different layers comprising the 

composite wall. 

Analysis of the composite wall assumes that there is a perfect contact between layers and no 

temperature drop occurs across the interface between materials. 

 

 

 

 

 

Unsteady state heat conduction 

In the previous section, the heat conduction equations were applied to different steady state 

conditions, where the temperature of a system was only a function of space, not time. 

However, most metallurgical process involve not only the function of space but also a 

function of time. Heat conduction in such case is known as unsteady state heat conduction or 

transient heat conduction. 

Lumped analysis 

In lumped system analysis, the internal conduction resistance of the heat flow is negligible 

compared to the convective resistance at the surface. So, the temperature of the body varies 

with time, but at any given instant, the temperature within the body is uniform and is 

independent of position i.e, T = T(τ) only. 

Consider a solid body of arbitrary shape, volulme V, mas m, density ρ, surface area A and 

specific heat Cp as shown in figure below. 

http://www.engineeringenotes.com/wp-content/uploads/2017/11/clip_image0194.png


At τ = 0, let the temperature throughout the body be uniform at T = Ti. At the instant τ = 0, let 

the body be suddenly placed in a medium at a temperature of T∞ as shown in figure. 

 

 

 

 

 

 

The energy balance for this situation will be 

Amount of heat transferred into the body in time interval dτ = Increase in the internal energy 

of the body in time interval dτ 

So heat enetering into the solid is due to convection and it is expressed as 

Qconv = hA(T∞ – T(τ))                                                                                                  

And  

E = ρVc
𝑑𝑇

𝑑𝑡
                                                                                                                      (a) 

Introducing the temperature difference θ 

Θ = T(τ) – T∞ 

Differentiating the above equation we get that dT/dt = -dθ/dt, substituting in equation (a)  and 

rearranging the equation we obtain  

 Θ = 
𝜌𝑉𝑐

ℎ𝐴
 
𝑑𝜃

𝑑𝑡
                                                                                           (b)                                              

1lumped system analysis 



By separation of variables and integration from the initial condition at t = 0 and T(0) = Ti, we 

get 

 
𝜌𝑉𝑐

ℎ𝐴
 ln

𝜃

𝜃𝑖
 = t                                                                     (c) 

Where θi = T∞ - Ti 

The fraction 
𝜃

𝜃𝑖
 can be obtained by rearranging the above equation such 

𝜃

𝜃𝑖
=  

𝑇∞−𝑇

𝑇∞−𝑇𝑖
 = exp[(

ℎ𝐴

𝜌𝑉𝑐
) 𝑡]                                                       (d) 

 

 

Equation (d) can also be called as Newtonian cooling (or heating). It shows that the 

temperature falls exponentially with time.  

                                                                               

                                                                                                             

 

 

 

 

 

 

 

 

 

 

 



IV MODULE 

 

NATURAL AND FORCED CONVECTION 

Convection is the mechanism of heat transfer through a fluid in the presence of bulk fluid 

motion. Convection is classified as natural and forced convection depending on how fluid 

motion is initiated . in natural convection any fluid motion is caused by natural means such as 

buoyant effect, i.e., the rise of warmer fluid and the fall of cooler fluid. Whereas in forced 

convection, the fluid is forced to flow over a surface or in the tube by external means such as 

a pump or fan. 

Mechanism of forced convection 

Convection heat transfer is complicated since it involves fluid motion as well as heat 

conduction. The fluid motion enhances heat transfer (the higher the velocity the higher the 

heat transfer rate). 

The rate of convection heat transfer is expressed by Newton’s law of cooling: 

                                                            q = h(Ts - Tꝏ) 

     Q = hA(Ts - Tꝏ) 

The convective heat transfer coefficient h strongly depends on the fluid properties and the 

roughness of the solid surface, and the type of the fluid flow. 

 

 

 

 



  

 

Form the above figure it is assumed that the velocity of the fluid is zero at the wall, this 

assumption is called no-slip condition. So the heat transfer from the solid surface to the fluid 

layer is purely conduction since the fluid is motionless. Thus, 

                                                

 

 

 

 

 

  

The convection heat transfer coefficient, in general, varies along the flow direction. The mean 

or average convection heat transfer coefficient for a surface is determined by averaging the 

local heat transfer coefficient over the entire surface. 

 

 

 

 



NON-DIMENSIONAL GROUP 

The dimensionless group are 

Nusselt number: non-dimensional heat transfer coefficient  

                                 Nu = 
ℎ𝛿

𝑘
 = 

𝑞°𝑐𝑜𝑛𝑣

𝑞°𝑐𝑜𝑛𝑑
  

Where δ is the characteristic length. Nusselt number represents the enhancement of heat 

transfer through a fluid as a result of convection relative to conduction across the same fluid 

layer. 

Prandtl number: is a measure of the relative thickness of the velocity and thermal boundary 

layer 

                                Pr = 
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 ℎ𝑒𝑎𝑡
 = 

𝑣

𝛼
 = 

µ𝐶𝑝

𝛼
 

Where α = thermal diffusivity 

            Cp = specific heat capacity 

             µ = dynamic viscosity 

             v = kinematic viscosity 

 

 

 

 

 



 

Thermal boundary layer 

A thermal boundary layer develops when a fluid at a specific temperature flows over a 

surface which is at different temperature 

 

 

 

 

 

 

 

 

The thickness of the thermal boundary layer δT is defined as the distance at which: 

      

The relative thickness of the velocity and the thermal boundary layer is described by the 

Prandtl number. 

For low Prandtl number fluids, i.e., liquid metals, heat diffuses much faster than momentum 

flow and the velocity boundary layer is contained within the thermal boundary layer. On the 

other hand for high Prandtl number like oil, heat diffuses much slower than the momentum 

and the thermal boundary layer is contained within the velocity boundary layer. 

 

2 thermal boundary layer 



RADIATIVE HEAT TRANSFER 

Heat transfer form a body with a high temperature to a body with low temperature, when 

bodies are not in direct physical contact with each other or when they are separated in space, 

is called heat radiation. All physical substances in solid, liquid, or gaseous states can emit 

energy via a process of electromagnetic radiation because of vibrational and rotational 

movement of their molecules and atoms. Unlike in conduction and convection,, radiative heat 

transfer doesnot require any medium. 

Everything around us constantly emits radiation, and the emissivity represents 

the emission characteristics of those bodies. This means that every body, in- 

cluding our own, is constantly bombarded by radiation coming from all direc- 

tions  over  a  range  of  wavelengths. 

Absorptivity (α) is a measure of how much of  the radiation is absorbed by the body.  

Reflectivity( ρ )  is a measure of how much is reflected, and  transmissivity( τ ) is a measure 

of how much passes through the object.  

      

 

 



BLACKBODY RADIATION  

A blackbody is an ideal surface with the following properties. 

1. Blackbody radiation absorbs all the incident radiation independent of wavelength and 

direction.  

2. For a given wavelength and temperature, no surface can emit more energy than a 

blackbody. Planck’s distribution of blackbody radiation is given by 

 

where Iλ,B  is the blackbody intensity, h = 6.6252 × 10-34 J s, kB is Boltzmann constant = 1.38 

10-23J/K, and c is the speed of light. The blackbody emissive power is given by eb,λ(λ,T) = 

pIb,l(l,T). Integration of the blackbody emissive over the entire spectrum gives the famous 

Stefan-Boltzmann law, e = σT4 . σ is the StefaneBoltzmann constant whose value is 5.67 × 

10-8 W/(m2 K ) and the unit of temperature is Kelvin.  

 

 

 

 

 

 



STEFAN BOLTZMANN LAW 

This law states that the rate of radiation energy from the surface per unit area is proportional 

to the fourth power of the temperature of the body 

     E = σAT4 

E = rate of energy emission from the surface 

A = surface area of the radiator 

σ = Stefan- Boltzmann constant 

If we consider a black body with surface temperatures T1 which radiates to another black 

body with surface temperature T2 that completely surrounds it, the second black body 

completely absorbs the incident energy and emits radiant energy that is proportional to T2
4. 

The net heat rate transfer by thermal radiation is then given by: 

     E = σA(T1
4 – T2

4) 

A black body is a perfect radiator. Real bodies, however, do not act like a perfect radiator and 

emit at a lower rate. To take 108 Nonlinear Systems in Heat Transfer into account the real 

nature of the radiant bodies, a factor ε, called emissivity, is introduced. Emissivity is defined 

as the ratio of the emission from a real “gray” surface to the emission from a perfect “black” 

surface. Then, the rate of radiation heat transfer from a real body at temperature T1 which is 

surrounded by a black body at temperature T2, is given by: 

      E = σA1ε1(T1
4 – T2

4) 

It is worth pointing out that in most of the practical engineering problems, usually all three-

heat transfer mechanisms, namely conduction, convection, and radiation, occur 

simultaneously. 



KIRCHOFF’S LAW 

 

 It establishes the relationship between the emissivity and the absorptivity of a body. This 

relationship may be obtained by studying radiant interchange between two surfaces. 

Consider two surfaces, one gray and the other absolutely black. The surfaces are arranged 

parallel to each other and so close that the radiation of each impinges upon the other. The 

temperature, emissive power and absorptivity of the surfaces are, respectively, T, E, A and 

T0, Eo, Ao; A0 = 1 and T>T0. Let us write the energy balance for the gray surface. A unit area 

of the gray surfaces emits per unit time a certain amount of energy E [kcal/m2-hr]. The energy 

impinging upon the black surface is fully absorbed by it. In its turn, the black surface emits 

E0 [kcal/m2-hr]. A portion AE0 of this energy is absorbed by the gray body, and the remaining 

portion, equal to (1-A) E0, is reflected and fully absorbed by the black surface. Thus, for the 

gray surface the energy input is AE and expenditure E. Consequently, the balance of radiant 

interchange is 

Eres= q= E-AE0 [kcal/m2-hr]. 

Radiant interchange between two surfaces also takes place when T = T0. In this case, the system 

is in mobile thermal equilibrium and q = 0. Then, from equation we have 

 

The relationship is applicable to any body and therefore may be rewritten as follows: 

. 

In this form, Kirchhoff’s law is formulated thus: For all bodies the ratio of the emissive 

power to absorptivity is the same and is equal to the emissive power of a black body at 

the same temperature, and depends only on the temperature. 



From Kirchhoff’s law it also follows that the emissive power of bodies increases along with 

their absorptivity. If the absorptivity A of a body is low, its emissive power E is low too. 

Therefore, good reflectors are poor emitters; for instance, the emissive power of an absolutely 

white body is zero. 

LAMBERT’S LAW 

This law states that the total emissive power Eθ from a radiating plane surface in any 

direction is directly proportional to the cosine of the angle of submission. The angle of 

emission θ is the angle subtended by the normal to the radiating surface and the direction 

vector of emission of the receiving surface. If En is the total emissive power of the radiating 

surface in the direction of its normal then 

Eθ  = Eθ cos θ 

WEIN’S DISPLACEMENT LAW 

The black body radiation curve for different temperature peaks at a wavelength inversely 

proportional to the temperature 

λmaz × T = c 

where T is the absolute temperature in Kelvin  

and c is constant 



  

 

GREY BODY 

A source with emissivity (ε < 1) independent of wavelength ofteh is referred to as a gray 

body. It will have emissive and absorptive power less than that of a blackbody.  

 

Figure 3: blacbody radiation as a function of wavelength at various wavelenth 



THE VIEW FACTOR 

Radiation  heat  transfer  between  surfaces  depends  on  the  orientation  of  the  surfaces   

relative   to   each   other   as   well   as   their   radiation   properties   and    

temperatures.  

It is purely a geometrical parameters that accounts for the effects of orientation on radiation 

between surface. 

In view factor we assume uniform radiation in all directions throughout the surface. Also the 

surface between two surface doesnot absorb, emit or scatter radiation. 

Fij = the fraction of the radiation leaving surface I that strikes the surface j directly 

 



Note the following 

• The view factor ranges between zero and one 

• Fij = 0 indicates that two surfaces donot see each other directly. Fij = 1 indicates that 

the surface j completely surrounds surface i. 

• The radiation that strikes the surface doenot need to be absorbed by that surface 

• Fii is the fraction of radiation leaving surface i that strikes itself directly. Fii = 0 for 

plane or convex surfaces, and Fii ≠ 0 for concae surface. 

 

 

 

 

 

 

Figure 4: view factor of different surface 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



MODULE V 

MASS TRANSFER 

It is defined as the transfer of matter by virtue of species concentration difference in a system. 

The differences in concentration gradient provides the driving force for mass transfer. It 

always occurs in the direction of reducing concentration gradient. 

Mass transfer occurs in two mechanisms 

i. Diffusion mass transfer  

ii. Convective mass transfer 

i. Diffusion mass transfer 

In this process the transfer of mass occur by the movement of molecules or 

species or particles of one component to other. Diffusional mass transfer may 

occur due to the concentration gradient 

ii. Convective mass transfer 

It is mechanism in which mass is transferred between the fluid and the solid 

surface as a result od movement of matter from the fluid to the solid surface or 

fluid. 

Again the convective mass transfer is classified into natural and forced convection 

mass transfer. 

Mass flux 

The amount of mass transfer per unit area of the flow is called mass flux. 

If m is the amount of mass flow and A is the are normal to the direction of mass flow, then 

the mass flux J = m/A. 

 



Laws of diffusion 

Fick’s law of diffusion 

Fick’s first law state that the mass flux J is directly proportional to the concentration gradient 

of the species. 

    J = -D
𝜕𝑐

𝜕𝑥
 

Where D is the proportionality coefficient called diffusion coefficient or diffusivity. 

 

 

 

 

 

 

The above figure shows that the diffusion is down the concentration gradient that’s why the 

minus sign is in the equation the diffusion driving force is the concentration gradient.  This is 

also known as the steady state equation or similar to the Fourier laws of heat transfer. 

Similarly the unsteady state condition is represented by a second order differential equation 

known as Fick’s second law, 

    
𝜕𝑐𝑥

𝜕𝑡
=  

𝜕

𝜕𝑥
(𝐷

𝜕𝑐𝑥

𝜕𝑥
) 

Figure 5: geometry of Fick's first law 



For many practical problem one can assume that D is independent of c leading to a simplified 

version of the above equation\ 

    
𝜕𝑐𝑥

𝜕𝑡
= (𝐷

𝜕2𝑐𝑥

𝜕𝑥2 ) 

 

The common application of the above equation is the diffusion of material into a semi-infinite 

solid while the surface concentration of the diffusion species, cs remains constant. Two 

examples of this system would be the plating of metals and the saturation of materials with 

atmospheric gases. Specifically, the steel surface are often hardened by carburization, the 

diffusion of carbon atoms into the steel from a carbon-rich environment. The solution to theis 

differential equation with the given boundary condition is 

    
𝑐𝑥− 𝑐0 

𝑐𝑠− 𝑐0
= 1 − 𝑒𝑟𝑓 (

𝑥

2√𝐷𝑡
)  

 

Where c0 is the initial bulk concentration of the diffusing species and erf refers to the 

Gaussian error function. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

CONCENTRATION BOUNDARY LAYER 

In a  flowing system,  there will be a  relative transport of species and species conservation 

must be satisfied at each point in the concentration boundary layer. The pertinent form 

of the conservation equation may be obtained by identifying the processes that affect the 

transport and generation of species A for a differential control volume in the boundary 

layer. 

[Derivation is similar to the thermal boundary layer equation; - carry out. Hints: 

Species A may be transported by advection (with the mean velocity of the mixture) and 

by diffusion (relative to the mean motion) in each of coordinate directions.] 

 

The rate at which the mass of species A is generated per unit volume due to such reactions 

as . If the total mass density  is assumed to be constant we get 

Figure 6: solution of Fick’s second law 



………………………..1 

For mass transfer problems,  can no longer be zero at the surface. However, it will be 

reasonable to assume     which is equivalent to assuming that mass transfer has a  

negligible effect on t h e  velocity boundary layer. We note that with mass transfer, the 

boundary layer fluid is a binary mixture of species A and  B  In  all  problems  of  

interest   and  it  is  reasonable  to  assume  that  the  boundary layer 

properties  are those of species  

because boundary layer thickness is typically small, the following inequality will apply 

 

 

 

Using the following non-dimensional variables. 

 

 
 

and  

The above equation will become 

 

…………………………………..3 

 

where ,  is Schmidt Number =  

 

  is the ratio of momentum and mass diffusivities. For mass transfer in a gas flow over 

an evaporating liquid or sublimating solid, the convection mass transfer coefficient      

depends on 

 



                                       

Again, 

 
 

 
 

Which is dimensionless concentration gradient at the surface 

 

Sh = Sherwood number  

We have already seen that the significance of Prandtl number 

 

  Pr = 
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 ℎ𝑒𝑎𝑡
 = 

𝑣

𝛼
 = 

µ𝐶𝑝

𝛼
 

Similarly, the Schmidt number provides a relative measure of the relative effectiveness 

of 

 

momentum and mass transport by diffusion in the velocity and concentration 

boundary layers, respectively. 

 

 

 

Another parameter which related to Pr and Sc is the lewis number. It is defined as 

    Le = 
𝛼

𝐷𝐴𝐵
 = 

𝑆𝑐

𝑃𝑟
 



INTERFACIAL MASS TRANSFER 

In the previous section, we deal with mass transfer only with single phase. However, in 

metallurgical application mass transfer are concerned with transfer across the phase boundary 

which may be called as the interfacial mass transfer. Some theories have been suggested to 

calculate the mass transfer rate across the phase boundary 

Two-film theory 

First proposed by Lewis and Whitman, they attempt to explain the mass transfer across an 

interface. In this theory, they assumed that the turbulence dies at the interface and that a 

laminar layer is established across the interface. Outside these laminar layer, the composition 

of these phase assumes to be in uniform 

 

 

 

 

 

 

 

 

 

Are the  

 

Figure 7: two film theory transfer of a componet from slag phase to metalphase 



In figure 3 the diffusing component is transferred from slag to metal phase. Further, the linear 

variation in composition implies that the diffusion is under steady-state condition. The rate of 

transfer JA of the component A per unit area per unit time is expressed as 

   JA =  
𝐷𝑠

𝛿𝑠
 ( 𝐶𝑏,𝑠 −  𝐶𝑖,𝑠 ) = - 

𝐷𝑚

𝛿𝑚
(Ci,m – Cb,m) 

Where 𝛿𝑚 and 𝛿𝑠 are the boundary layer thicknesses in slag and metal phase 

respectively. The symbols Cb,s and Ci,s refers to the concentration in bulk and at the interface 

in the slag phase and Cb,m  and Ci,m refers to the corresponding bulk and interfacial 

concentration in metal phase. 

 

 

 

 

 


